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We present a fiber-based method for generating vortex beams with a tunable value of orbital angular momentum
(OAM) from −1h̄ to +1h̄ per photon. We propose a new method to determine the modal content of the fiber
and demonstrate high purity of the desired vortex state (97% after 20m, even after bends and twists). This
method has immediate utility for the multitude of applications in science and technology that exploit vortex
light states. c© 2012 Optical Society of America
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Because of their ability to carry orbital angular momen-
tum (OAM) [1], vortex beams have generated consider-
able interest in the recent past, finding applications in
the areas of optical tweezers [2, 3], higher dimensional
classical and quantum communications [4, 5], atom ma-
nipulation [6], and microscopy [7].
The most common methods for vortex beam genera-

tion use spatial light modulators (SLM). A fiber-based
generation technique, on the other hand, would yield ad-
vantages commonly derived from fibers, such as remote
delivery and compactness. In addition, the prospect of
exploiting fiber nonlinear optical properties [8] would en-
able temporal and spectral control of vortex beams.
In order to carry OAM, a fiber must support higher-

order modes (HOM). Specifically, it can be shown that
the linear combination of two HE21 HOMs with a
±π/2 phase shift between them will result in OAM
states [9,10]. Systems that induce stress in a multimode
fiber [11] or utilize acoustic long-period gratings [10] to
achieve this π/2 phase shift have been demonstrated.
However, mode coupling in fibers destabilizes the OAM
states, leading to multipath interference (MPI) [12, 13].
In most multimode fibers, the TE and TM modes always
coexist with the desired HE21 modes, and will couple
with them to produce linearly polarized (LP) states at
the output [14]. Not being true eigenmodes of the fiber,
the LP modes cannot carry OAM, and to the best of our
knowledge, OAM states have been demonstrated only in
short (≤30 cm), straight fibers.
In this letter, we show that the OAM states can be

created with 97% purity in a 20-m-long fiber, even in
the presence of bends and twists. To achieve this, we
designed and fabricated a so-called vortex fiber that
lifts the degeneracy among the higher order LP11 fam-
ily of modes, thereby minimizing the coupling to the TE
and TM modes [14]. Figure 1 shows the experimental
setup. Using standard single mode fiber (SMF), a 50-
nm-wide 1550-nm LED, and a narrowband CW tunable

laser (Agilent 8168F) were multiplexed into a 20-m-long
vortex fiber. Thereafter, using a microbend grating (40-
mm length, 475-µm period) [15], with only LED source
turned on, we obtained 18-dB of mode conversion from
the input fundamental mode to the desired HEodd

21 mode
(see the transmission spectrum in Fig. 1b). Next, we
switched the source to the laser, tuned to the resonant
mode-conversion wavelength (1527 nm). The vortex fiber
is then cleaved approximately 20m after the output of
the microbend grating and imaged onto a camera (VDS,
NIR-300, InGaAs).

Fig. 1. (Color online) (a) Experimental setup. (b) Grat-
ing resonance spectrum used to deduce HEodd

21 mode con-
version level. (c) Camera image showing l = 1 OAM,
s = 1 SAM state.

In order to determine the purity of the vortex states
thus obtained, we have developed a new method that
analyzes fiber output projections onto left circular (LC)
and right circular (RC) polarization states. In addi-
tion, to observe the phase of the beam, we interfered
a vertical (V) polarization projection with the reference
beam. Using a combination of non-polarizing beam split-
ters (NPBS), quarter wave plates (QWP) and polarizing
beam displacing prisms (PBDP), we devised a setup ca-
pable of recording these projections in one camera shot.
Previously, it was shown that a linear combination of two
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l = ±1 OAMmodes will have a total OAM of topological
charge that lies between −1 ≤ l ≤ 1. [16]. By adjusting
paddles on a commercial polarization controller mounted
on our vortex fiber (PolCon2 of Fig. 1a), we were able to
tune the output OAM state from l = −1 to l = 1 (Fig.
1c shows the output of the l = 1 OAM and s = 1 spin
angular momentum (SAM) state).
In general, light at the fiber output can contain contri-

butions from the six vector modes: HE
x,y
11

, HE
even,odd
21

,
TM01 and TE01 [9]. To analyze the purity of the OAM
states it is more convenient to introduce a so-called vor-
tex basis set:
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where we have used the fact that, for this fiber, the vector
modes may be accurately expressed as linear combina-
tions of LP modes through the weak guidance approxi-
mation, and Flm(r) denote the radial wave functions of
the LPlm modes [9]. Note that in this representation,

the V
+,−
21 modes correspond to the desired OAM states

in the fiber. The total electric field can be expressed as:

E(r, θ) =
∑

l=[11,21,T ]

∑

s=[+,−]

γs
l V

s
l (r, θ), (1)

where γs
l are the mode field complex amplitudes of the

vortex basis vectors. We denote mode power contribu-
tions as:

MPIsl
def
= 10log10(|γs

l |2/Ptot), (2)

where Ptot =
∑

l

∑
s |γ

s
l |

2. To experimentally measure
the mode amplitudes, we consider the intensity of the
LC polarization projection:

|P+E(r, θ)|2 = |γ+
11F01(r) + γ+

21e
iθF11(r) + γ+

T e−iθF11(r)|2.

The key approximation in our analysis is that the
|γ+

11||γ
+

T | term may be neglected, which is valid when
most of the power is confined to the HE21 modes, as is
the case in the experiments presented below. In addition,
for simplicity we confine attention to the points on the
radius r0, for which F01(r0) ≈ F11(r0) (we observe that
r0 conveniently corresponds to the radius of the LC and
RC projection ring). The LC azimuthal intensity at r0
now simplifies to:

|P+E(r0, θ)|2 ∼ DC +∆1 cos(θ + φ21,11)+

+∆2 cos(2θ + φ21,T ), (3)

where φij indicates the phase difference between the two
corresponding modes and we define:
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By taking the Fourier series of |P+E(r0, θ)|
2, the coef-

ficients DC, ∆1 and ∆2 can be determined; the mode
powers (|γs

l |
2) can then be obtained by solving Eq.s 4-

6. Figure 2a shows an example of a measurement of
|P+E(r0, θ)|

2 – the azimuthal intensity variation of the
image that occurs due to interference between the V+

21,
V+

11
and V+

T modes. Figure 2b shows the example of the
Fourier series analysis, and Fig. 2c illustrates the pow-
ers of the extracted modes. An equivalent procedure was
also repeated for the RC projection to calculate ampli-
tudes of the negative helicity modes.

Fig. 2. (Color online) (a) Azimuthal intensity profile of
LC projection for radius r0. (b) Fourier series coefficients
for profile in (a). (c) Extracted modal power contribu-
tions.

The high purity of the vortex states implies that
only two modes – the HEeven,odd

21
pair – are dominantly

present in the fiber. Here, we would like to emphasize the
analogy of the two HE21 modes with the two linearly-
polarized fundamental modes – HEx,y

11 . As with the two
fundamental modes, we first note that since the HE21

modes are degenerate, they can easily couple to each
other under controlled perturbations. Second, just as a
linear combination of two fundamental modes with ±π/2
phase shift will create a circularly polarized state, the
same linear combination of the two HE21 modes results
in an OAM state. This analogy has also been elegantly
represented by a higher order Poincaré sphere by other
authors studying OAM [17, 18]. A general linear com-
bination of the two l = ±1 OAM modes will have a
topological charge with non-integer total OAM [16].
In order to show the ability of the system to control

OAM, camera images were observed and analyzed while
the polarization controller (PolCon2 on Fig 1a) was man-
ually tuned using adjustable paddles. Figure 3a shows
the modal power distribution as the system was tuned
through the different linear combinations of the vortex
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states. In particular, Fig. 3b shows observed camera im-
ages for the pure V+

21 state (A), linear combination of
the vortex states (B) and the pure V−

21 state (C). Note
that using a quarter wave plate, V+,−

21 states can be con-
verted to the conventionally constructed linearly polar-
ized OAM states. Our calculation showed that the com-
bined power of the undesired V

+,−
T and V

+,−
11

modes
mostly stayed below a level of -15 dB (3%). In order
to estimate the error of the method described, a sim-
ulated data set has been created with known contribu-
tions of each of the vortex basis vectors (accounting for
the dark and shot noise). The data set was then analyzed
and the original and the recovered mode powers were
compared. Estimated errors were <0.01dB, ≈0.2 dB and
≈ 0.2dB for the V

+,−
21

, V+,−
T and V

+,−
11

modes respec-
tively. With this demonstration we conclude that our
system can create any linear combination of OAM states
(−1 ≤ l ≤ +1), in a controllable fashion.

Fig. 3. (Color online) (a) Mode powers as the PolCon2
was adjusted to obtain the desired superposition of the
OAM states. (b) Observed camera images at points (A-
C).

Having shown arbitrary, controllable preparation of
OAM states in a fiber with high purity, we would like
to comment on a few experimental limitations of our
modal analysis technique. In particular, we noticed that
the beam-splitters we used had≈ 3% transmission differ-
ence for s and p polarization, and were slightly birefrin-
gent. Both of these factors underestimate the measured
vortex mode purity. Since the modal content can be de-
termined by using only two polarization projections, we
were able to simplify the setup at the expense of not
having the four projections. By doing this, we observed
a 6-dB lower power for the V+,−

T modes, suggesting that
the use of better optical components can enable more ac-
curate purity measurements. In addition to the optical
components, we noticed that the camera dark noise level
introduces a limit for theV+,−

21
vortex state sensitivity to

be 20 dB. Note that this limit does not apply to theV+,−
T

and V
+,−
11 modes, as their amplitudes are obtained from

the interference effects and not the DC power measure-
ments. We expect that a camera with lower dark-noise
count will improve this sensitivity too.
In summary, we demonstrate a novel, all-fiber device,

that uses a specialty fiber and a conventional, commer-
cially available fiber polarization controller, to create and
tune the OAM of light with a topological charge that
could be continuously varied between −1 ≤ l ≤ +1. As
a fiber-based system, our device offers flexibility, com-
pactness and portability, unlike free-space optics coun-
terparts. We develop a novel method for modal content
recovery and shown that vortex states with high purity
can be created (97% after 20-m-long propagation, after
bends and twists). This method can find applications in
many systems that utilize vortex light states.
We would like to thank P.E. Steinvurzel and P. Gregg

for helpful discussions. This work was funded by DARPA
grant No. HR0011-11-1-0004.
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