FileIO
JSON
To dump data to json file:
output_path = <some_dir> / "some_file.json"
params = {'a': 1, 'b': 2}
with output_path.open('w') as f:
json.dump(params, f, indent=4) # `indent` writes each new input on a new lineto load from json file:
with input_path.open() as f:
result = json.load(f)shutil
shutil.copy(src_path, dst_path)
from shutil import copyfile, rmtree, moveCSV
import csv
def read_csv_file_into_dict(filename):
with open(filename, newline='') as csvfile:
reader = csv.reader(csvfile, delimiter=',')
x = {row[0]: row[1] for row in reader}
return xReadline and Readlines
with open(f, "r") as f:
a = f.readlines()Find and delete files/folders
from pathlib import Path
a = list(Path('path_to_the_folder').glob('**/some_file_name'))
for x in a:
x.unlink()To delete a folder use shutil.rmtree:
import shutil
shutil.rmtree(Path("a_directory"))Download URL file into DataFrame
One can do it directly from pandas:
import pandas as pd
# URL of the iris dataset
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
# Read the iris dataset and store it in a DataFrame
iris_df = pd.read_csv(url, header=None, names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])
# Display the first 5 rows of the iris DataFrame
print(iris_df.head())or using requests to download file first:
response = requests.get(url)
if response.status_code == 200:
with open("iris.csv", "wb") as f:
f.write(response.content)
else:
print("Failed to download dataset")